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1. Introduction 
The vibration signal is used for achieving the monitoring 

and identifying fault using the conventional signal processing 
approaches [1]. In healthy monitoring conditions, the 
measured signal is usually considered as stationary signal for 
the sequent analysis. Because of the noise and load fluctuation 
in defective state, non-stationary signal may be created in 
utmost actual conditions [2-5]. The cyclo-stationary method is 
an efficient tool for analyzing the non-stationery signal and it 
is applied to extract characteristic of signal, monitor state, and 
identify defect [6, 7]. Also, the signal of defected machine has 
non-stationary property, which delivers a possible 
improvement for cyclo-stationary method [8, 9]. Through the 
cyclo-stationary (CS) analysis, the important unseen 
characteristic info can be shown, and the various information 
represents the variable defect situations. 

Usually, the signal has periodic or multi-periodic statistical 
characteristics are denoted as “cyclo-stationary (CS)” or 
“periodic stationary". The rotary machine, that runs with 
rotational motion, will create periodic-signal at standard 
operational conditions and it begins to vibrate, when the faults 
or defects occur in rotary machine. The vibration signal 
generated in this case is denoted as a “modulation signal”. Its 
second-order statistics (mostly cyclic autocorrelation function, 
spectral-correlation-function, and spectral-coherency-
function) introduce the periodicity therefore it is observed as a 

cyclo-stationary signal [10]. Several papers dealt with using 
cyclo-stationary signal processes to diagnosis the vibration 
signals of intact and defected rotating machines [11-23]. For 
example, some researches dealt with the defect in gears such 
as [11, 15, 17 and 19]. On other side, the papers [12, 13, 14 
and 20] considered faults in bearing. The cyclo-stationarity 
signal processes were analyzed and discussed in papers [16, 
18, 21-23].        

Gardner et al. [24] introduced a brief literature survey 
dealing with cyclo-stationarity and discussed them from 
different fields. They used “spectral correlation approach” for 
analyzing cyclo-non-stationary vibration signals of rotating 
machines when the rotation speed is variable, also in [23, 25-
28]. 

On the other side, signals that exhibit a concealed 
periodicity associated with the angle of a shaft can be 
characterized as exhibiting cyclo-stationary in the temporal 
domain when subjected to constant speed operating 
conditions. Nevertheless, when subjected to different speed 
circumstances, the impulses associated with the rotating speed 
of the shaft exhibit a lack of cyclo-stationary over time, and 
the carriers associated with time no longer exhibit cyclo-
stationary in terms of angle. Therefore, these entities are 
characterized as nonstationary. The aforementioned 
characteristic is recognized as the definitive representation of 
the signal emitted by rolling element bearings when subjected 
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to different operational circumstances. Despite the absence of 
time or angle-cyclo-stationary in the signals, there is still an 
underlying periodicity present in the signal. 

The cyclo-non- stationary signals are analyzed by using the 
Frequency-Order SC (FOSC) method. To analyze cyclo-non- 
stationary signals, the Frequency-Order spectral-correlation 
(FOSC) method to shift the signal in the angle-domain. 
Otherwise, the signal can be resampled entirely in the angle 
domain to produce Order-Order spectral-correlation (OOSC) 
[23, 28]. Li et al. [29] used sparse code shrinkage algorithm to 
de-noise the measured signal to get enhanced results. Zhang et 
al. [30] controlled the involvement of each spectral frequency 
line for emphasizing the defect signature. Also, Smith et al. 
[31] developed a band selection tool to capture cyclo-
stationarity established on the strength of target cyclic 
frequency components in the spectrum of the log envelope. 

The spectral-correlation denotes the power distribution of 
the signal relating to the spectral frequency and cyclic 
frequency, while spectral-coherence is the weighted version of 
spectral-coherence and tends to magnify weak cyclo-
stationary signals and both are used to analyze cyclo-stationary 
signals. These methods are able to reveal hidden periodicities 
that are masked by stronger signals and random noise and they 
can be displayed in the bi-variable map such as frequency-
frequency, order-frequency, or order-order domains. The 
Enhanced Envelope Spectrum (EES) can be obtained by 
integrating the bi-variable over the spectral frequency. 

One reason for the restriction of cyclic spectral analysis is 
the high computation costs involved in the analysis of cyclo-
stationary signals. Generally, the spectral correlation may be 
costly to calculate in certain instances such that it becomes 
impractical to apply for quick troubleshooting and daily 
analysis. Several studies have been prepared to minimize 
computation costs. Roberts et al. [32] suggested the FFT 
Accumulation Method (FAM) and the Strip-Spectral-
Correlation Algorithm (SSCA) but the estimation error of this 
method is very high because of degradation of the statistical 
performance of the estimator [32]. The Strip-Spectral-
Correlation Algorithm offers some computational saving over 
the FFT Accumulation Method at the expense of a degraded 
signal-to-noise ratio of the output [32, 33]; and it needs huge 
memory, therefore it is used for to analyze small-sized signals 
only. 

Antoni et al. [34] estimated the spectral correlation using 
new suggested algorithm named the Fast-Spectral-Correlation 
(FSC) algorithm. Their new algorithm based on analyzing the 
Short Time Fourier Transform (STFT) lines around a certain 
spectral frequency to extract the Spectral-Correlation. Since 
they introduced this method, the Fast-Spectral-Correlation 
(FSC) has become a standard method for spectral correlation 
estimation in vibration field. 

On other side, Borghesani and Antoni [35] suggested new 
faster method to reduce the computation cost but the method 
requires double the memory. The disadvantages of their new 
method are numerical instability, the inconsistent results 
depending on the cyclic frequency range. 

The Averaged Cyclic Periodogram method is one of the 
most important methods to compute spectral-correlation and it 
bases on the weighted overlapped segment averaging, which is 
applied in spectrum averaging [32, 37]. Despite ACP 
calculations can be accelerated by using power-of-two 
processing window length to calculate the Short Time Fourier 
Transform (STFT), the method computation cost is still very 

high due to the calculations of shifted STFTs for the whole 
range of cyclic frequency [32, 36]. In this work, the Fast 
Averaged Cyclic Periodogram method, that proposed by 
Alsalaet [36], is used to analyze the measured vibration signal 
of defected ball bearing. Experimentally, four types of defects 
in ball bearings are employed in this work (Outer Race Slot, 
Inner Race Slot, Ball Slot and Combined Defects). 

2. Theoretical background 
2.1. Vibration signal under constant speed 

Emerging defects in rolling bearings are generally resulting 
from a local material loss such as pitting, spalling, corrosion, 
rubbing, contamination in contact surfaces inner race, outer 
race, balls. If a rolling body touches the defect, impulse with 
short duration will generate and this impulse signal leads to 
excite several resonances of the bearing structural [36]. Duo to 
repeat of these impulses during bearing operation, a sequence 
of impulse responses, whose temporal spacing effects by the 
defect kind and bearing dimensions, will be generated. Also, 
this impulse responses series is probably amplitude modulated 
because of the transitory of the defect through the load zone. 
Normally, defects in outer race generate a uniform amplitude 
modulation for fixed outer race and existence of a radial load, 
while defects in inner race and rolling-element generate a 
periodic amplitude modulation at the period of the inner race 
and cage rotation respectively. 

According to the above considerations, the vibration signal 
is generally taken as a signal in time domain in this work is 
taken as Discrete vibration signal x(n), as shown in Fig. 1. 

 
Fig. 1 Vibration signal in time domain considering in this work. 

2.2. Cyclo-stationary signal processing 

If the rotational speed remains constant while acquiring 
data, it is expected that rotating mechanical components will 
produce periodic transient patterns that exhibit cyclic 
behavior. The transmission of these signals frequently include 
data regarding the operational status of machine components. 
Signal processing and feature extraction techniques are 
commonly employed to extract this information and 
subsequently analyze the health condition of the machinery. 
According to the principles of cyclo-stationary theory, the 
signals obtained due to rotation of equipment are described by 
considering the first and second orders of cyclo-stationary. A 
signal is considered to possess cyclo-stationary of order n 
when its statistical n-order moment exhibits periodicity with a 
period of N. To illustrate, a signal demonstrates first-order 
cyclo-stationary (CS1) when its first moment (i.e. mean value) 
is a periodic function that follows Equation (1). Conversely, a 
stationary signal maintains a constant mean value at all times 
[36]. 

𝑅𝑅1𝑥𝑥(𝑛𝑛) = 𝑅𝑅1𝑥𝑥(𝑛𝑛 +  𝑁𝑁) =  𝔼𝔼 {𝑥𝑥(𝑛𝑛)}                                        (1) 
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Where: 

𝑅𝑅1𝑥𝑥(𝑛𝑛) : First statistical moment. 

𝑥𝑥(𝑛𝑛) : Discrete vibration signal. 

𝔼𝔼 : Ensemble averaging operator. 

N : Period of periodic function. 

n : The variable of time. 

In the context of rotating machinery, the CS1 vibration 
signals can be described as periodic waveforms that are 
associated with components that are phase-locked with the 
rotor speed. These components may include issues such as 
shaft misalignment and spalling gears, etc. In contrast, a signal 
that exhibits cyclo-stationary of the second order (CS2) is 
characterized by periodicity in its second-order statistical 
moment [21]. Specifically, this pertains to statistical measures 
associated with energy intensity and flow. Instances of these 
signals encompass white noise signals that undergo amplitude 
modulation through a periodic signal. The instantaneous 
autocorrelation function effectively captures the 2nd-order 
statistics: 

𝑅𝑅2𝑥𝑥(𝑛𝑛, 𝜏𝜏 ) = 𝑅𝑅2𝑥𝑥(𝑛𝑛 +  𝑁𝑁, 𝜏𝜏 ) = 𝔼𝔼{𝑥𝑥(𝑛𝑛)𝑥𝑥(𝑛𝑛 − 𝜏𝜏)∗}
= 𝔼𝔼 �𝑥𝑥(𝑛𝑛 +  𝛽𝛽𝜏𝜏 )𝑥𝑥�𝑛𝑛 −  𝛽𝛽𝜏𝜏 �

∗
�              (2) 

Where: 𝛽𝛽 + 𝛽𝛽 = 1  

Typically, 𝛽𝛽 = 𝛽𝛽 = 0.5 at symmetrically autocorrelation-
function while = 0 , 𝛽𝛽 = 1  for asymmetrically 
autocorrelation-function [37].  

The vibration signals associated with bearings are 
commonly denoted as (CS2), as they exhibit an underlying 
periodicity that is closely linked to the rotational speed of the 
shaft. In signal analysis processes, nth-order cyclo-stationary 
(CSn) refers to a signal that exhibits periodicity in its nth-order 
statistical moment. However, the signals having orders greater 
than CS2 are typically disregarded, like CS1 and CS2 
effectively capture the characteristics of interest in signals 
produced by rotating machinery. The sequential cyclic 
autocorrelation function has been observed to possess 
significant efficacy as a signal processing tool across various 
applications. In the case of signals derived from physical 
measures, like vibrations and acoustic signals, there are 
additional advantageous to utilize the corresponding 
frequency-domain-tool. The time-based autocorrelation-
function 𝑅𝑅2𝑥𝑥(𝑛𝑛, 𝜏𝜏 ) is a mathematical function that depends on 
(n) and (𝜏𝜏). The frequency-domain counterpart of the given 
function is dependent on: (1) the cyclic frequency, denoted as 
(α) which is associated with the modifying signal, and (2) the 
spectral frequency, denoted as (f) which is associated with the 
carrier signal. The Cyclic Spectral Correlation (CSC) is a 
computational technique that effectively characterizes the CS1 
and CS2 signals throughout the frequency-frequency domain 
[38]. The CSC can also be referred to the correlation 
distribution of the carrier and modulation frequencies of the 
signatures included in the signals, as described in equation (3), 
and Fig. 2 (b) shows the Cyclic Spectral Correlation (CSC). 

𝑆𝑆2𝑋𝑋(𝑓𝑓 ,𝛼𝛼) = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑊𝑊→∞

1
𝑊𝑊
𝔼𝔼{ℱ𝑊𝑊[𝑥𝑥(𝑛𝑛)]ℱ𝑊𝑊[𝑥𝑥(𝑛𝑛 + 𝜏𝜏)]∗}

= 𝔼𝔼 �𝑋𝑋(𝑓𝑓 +  𝛽𝛽𝛼𝛼)𝑋𝑋�𝑓𝑓 − 𝛽𝛽𝛼𝛼�
∗
�                (3) 

Where: 

 𝑆𝑆2𝑋𝑋(𝑓𝑓 ,𝛼𝛼) : the spectral correlation functions. 

ℱ𝑊𝑊[𝑥𝑥(𝑛𝑛)] : Fourier transform of the signal 𝑥𝑥(𝑛𝑛) during a finite 
time interval 𝑊𝑊. 

 

 

 

 
Fig. 2 The vibration analysis using spectral correlation in frequency-

frequency domain. 

2.3. Application of ACP for evaluating of spectral correlation 

Assume signal with totally length (L) collected in interval 
of sampling 𝛥𝛥𝛥𝛥 = 1/𝐹𝐹𝐹𝐹. Given a symmetric processing 
window function of length Nw, Short-Time Fourier Transform 
(STFT) can be computed for a specific piece of signal in ith-
time. The values of 𝛥𝛥𝛥𝛥 and length Nw are provided in equation 
(4). The complex envelope or complex demodulate is a 
collective term used to refer to the STFT coefficient [32]. 
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𝑋𝑋𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑙𝑙, 𝑓𝑓𝑘𝑘) = � 𝑥𝑥(𝑙𝑙𝑅𝑅 + 𝑙𝑙)𝑤𝑤(𝑙𝑙)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝑓𝑓𝑘𝑘𝛥𝛥𝛥𝛥

𝑁𝑁𝑤𝑤−1

𝜋𝜋=0

                 (4) 

The symbol (fk) denotes the discrete frequency, which is 
equal to 𝑘𝑘 𝛥𝛥𝑓𝑓 =  𝑘𝑘 𝐹𝐹𝐹𝐹/𝑁𝑁𝑤𝑤, where 𝛥𝛥𝑓𝑓 is the frequency 
resolution, k is an integer, Fs is the sampling frequency, and 
Nw is the length of the tapering window denoted by w(m).  The 
variable R denotes the temporal displacement (measured in 
samples) between successive windows, or alternatively 
referred to as the decimation factor [32, 33]. The analysis of a 
signal is significantly influenced by the phase shift, making it 
crucial to adjust phase reference to initial point of signal [34]. 

𝑋𝑋𝑤𝑤(𝑙𝑙, 𝑓𝑓𝑘𝑘) = � 𝑥𝑥(𝑙𝑙𝑅𝑅 + 𝑙𝑙)𝑤𝑤(𝑙𝑙)
𝑁𝑁𝑁𝑁−1

𝜋𝜋=0

𝑒𝑒−𝑗𝑗2𝜋𝜋(𝜋𝜋+𝑖𝑖𝑖𝑖)𝑓𝑓𝑘𝑘𝛥𝛥𝛥𝛥  

= X𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑙𝑙, 𝑓𝑓𝑘𝑘)𝑒𝑒−𝑗𝑗2𝜋𝜋𝑖𝑖𝑖𝑖𝑓𝑓𝑘𝑘𝛥𝛥𝛥𝛥                           (5) 

The time smoothed cyclic periodogram, also known as the 
Averaged-Cyclic-Periodogram, is a highly effective estimator 
for spectral correlation. The Averaged-Cyclic-Periodogram is 
viewed extension of Welch's method, that use the averaging 
technique over brief overlapped periodograms in order to 
effectively compute the power-spectrum [39]. When the cyclic 
frequency α = 0, the output of the ACP aligns with Welch's 
estimator [37]. Equation (6) provides the expression for ACP 
in the context of asymmetric spectral correlation [34]. 

𝑆𝑆2𝑋𝑋(𝑓𝑓 ,𝛼𝛼) =
1

𝐾𝐾 || 𝑤𝑤 ||2 𝐹𝐹𝑠𝑠
� 𝑋𝑋𝑁𝑁  (𝑙𝑙, 𝑓𝑓) 𝑋𝑋𝑁𝑁  (𝑙𝑙, 𝑓𝑓 − 𝛼𝛼)∗
𝑘𝑘−1

𝑖𝑖 = 0

        (6) 

The spectral-correlation is described by Eq. (7) by STFT-
envelopes determining by FFT [34]. 

𝑆𝑆2𝑋𝑋(𝑓𝑓 ,𝛼𝛼) =
1

𝐾𝐾 || 𝑤𝑤 ||2 𝐹𝐹𝑠𝑠
� 𝑋𝑋𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  (𝑙𝑙, 𝑓𝑓) 𝑋𝑋𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑙𝑙, 𝑓𝑓
𝑘𝑘−1

𝑖𝑖 = 0
− 𝛼𝛼)∗𝑒𝑒−𝑗𝑗2𝜋𝜋𝑖𝑖𝑖𝑖𝑓𝑓𝑘𝑘𝛥𝛥𝛥𝛥                                           (7) 

Here, the variable K is defined as ( ) /wL N R R− + , 
representing the count of blocks shifted by R with each block 

having a length of Nw. The term ( )
1

2 2

0

wN

n
w w n

−

=

|| || = | |∑  denotes 

the power of the window function. It is important to note that 
when Nw is a power of two or a similar approach is used for 
any Nw, the STFT coefficients are determined by the FFT. By 
shifting the time-domain-signal, first will allow you to 
calculate the frequency shifted coefficients [34]. 

𝑋𝑋𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑙𝑙, 𝑓𝑓𝑘𝑘 − 𝛼𝛼) = � (𝑥𝑥(𝑙𝑙𝑅𝑅
𝑁𝑁𝑤𝑤−1

𝜋𝜋 = 0
+ 𝑙𝑙)𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝛥𝛥𝛥𝛥)𝑤𝑤(𝑙𝑙)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝑓𝑓𝑘𝑘𝛥𝛥𝛥𝛥             (8) 

It is important to acknowledge that if frequency shifting is 
implemented on complete time-domain-signal (where n = 0, 1, 
2, 3, 4, ..., L) in order for preparing of the computation of the 
shifted spectrum, the resulted coefficients of Short-Time 
Fourier Transform (STFT) are adjusted for phase, rendering 
the term of exponential function in Equation (7) unnecessary.  

The utilization of this word becomes necessary in the 
context of block wise application of frequency shifting. 
Therefore, the spectral correlation utilizing the phase corrected 
Short-Time-Fourier Transform is expressed by: 

𝑆𝑆2𝑋𝑋(𝑓𝑓,𝛼𝛼) =
1

𝐾𝐾 || 𝑤𝑤 ||2 𝐹𝐹𝑠𝑠
� 𝑋𝑋𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑙𝑙, 𝑓𝑓)𝑋𝑋𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶 (𝑙𝑙, 𝑓𝑓 − 𝛼𝛼)∗  
𝑘𝑘−1

𝑖𝑖 = 0

(9) 

The phase-compensated Short-Time-Fourier-Transform 

(STFT), denoted as ( ),C
STFTX i f −α , is expressed by the 

subsequent equation: 

𝑋𝑋𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶 (𝑙𝑙, 𝑓𝑓𝑘𝑘 − 𝛼𝛼)

= � �𝑥𝑥(𝑙𝑙𝑅𝑅 + 𝑙𝑙)𝑒𝑒𝑗𝑗2𝜋𝜋(𝑖𝑖𝑖𝑖+𝜋𝜋)𝜋𝜋𝛥𝛥𝛥𝛥�
𝑁𝑁𝑤𝑤−1

𝜋𝜋 = 0

𝑤𝑤(𝑙𝑙)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝑓𝑓𝑘𝑘𝛥𝛥𝛥𝛥         (10) 

According to the literature, the Averaged-Cyclic-
Periodogram (ACP) has been identified as the utmost effective 
estimator [37]. The Averaged-Cyclic-Periodogram offers a 
high-resolution spectral correlation because to the ability to 
adjust the carrier frequency mesh 𝛥𝛥𝑓𝑓 by utilizing a large Nw, 
while simultaneously keeping an acceptable cyclic frequency 
resolution 𝛥𝛥𝛼𝛼 =  𝐹𝐹𝐹𝐹/𝐿𝐿. The ACP method entails the 
computation of the average of correlated STFT coefficients 
throughout the entire acquisition time T, which is equal to LTs. 
Here, to represents the interval of sampling. Conceptually, the 
averaging process is likened to low-pass filter having 
bandwidth of (1/T). Hence, the utilization of a decimation 
factor R enables the down sampling of complex envelopes 
while maintaining the integrity and dependability of the 
outcomes [33]. In order to optimize computing efficiency 
while minimizing cyclic leakage, multiple scholars have 
proposed setting the time shifting parameter R to a value more 
than 1 but less than Nw [37, 33, 40, 41]. When using the Hann 
or Hamming window, the value of R may be calculated as 
Nw/3, which corresponds to a 67% overlap. On the other hand, 
when using the half-sine window, the value of R can be 
determined as Nw/2, resulting in a 50% overlap. It is important 
to acknowledge that in cases when (f – α) is below zero, the 
equations (6), (7), or (9) can be utilized to compute the 
correlation between positive (f) and negative (f – α) 
frequencies. This case is commonly practice in the 
communication signal to uncover a characteristic related to 
twice carrier frequency, as outlined in references [42, 43]. 
Nevertheless, in the realm of mechanical-signal in vibration 
investigation, establishing correlation between negative 
frequencies is considered undesirable, as indicated by 
reference [34]. 

2.4. Evaluation of cyclic-spectral-coherence and improved 
envelope spectrum 

The analysis of the cyclic-spectral-coherence generates in 
map of bi-variables allows for the identification of unseen 
modulations, rendering it reliable method to distinguish cyclo-
stationary in vibration signals [34, 37]. To mitigate unequal 
distributions, it is possible to implement a whitening operation 
on the CSC. The Cyclic-Spectral-Coherence (CSCoh) is an 
expanded tool that characterizes the spectral correlations 
across a range of normalized values from 0 to 1. It is 
mathematically defined as Fig. 2(c) shows the Cyclic Spectral 
Coherence (CSCoh). 
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CSCoh(α, f) =
CSCx(α, f)

�CSCx(0, f)CSCx(0, f + α)
                            (11) 

The integration of both the CSC and CSCoh, bi-variable 
maps are performed with frequency-axis to yield a uniform 
spectrum. This integration process produces 1-D spectrum 
function, that is dependent on the cyclic frequency (α). The 
spectral frequencies to be integrated are characterized as 
including the entire accessible band, ranging (0-Nyquist) 
frequency. This integration yields spectrum which effectively 
captures totally modulations found in signal. Conversely, the 
band is characterized as the entity which optimizes the cyclic 
characteristic frequency of interest, whereas simultaneously 
reducing presence of background noise and other frequency 
components which could potentially obscure the desired 
frequency. By integrating over a specified band on the bi-
variable map, the detecting rate of distinctive frequency 
associated with the existing signal damage can be enhanced. 
The spectrum that is obtained from the frequency-frequency 
domain, as described by Equation (12), is referred to as the 
Improved Envelope Spectrum (IES). Figure 2(d) shows the 
improved envelope spectrum. 

IES(α) =
1

F2 − F1
� |CSCohx(α, f)|df
F2

F1
                                (12) 

2.5. Applying fast ACP to evaluate the spectral correlation  

The ACP approach has several benefits, one of which is 
that the time shift (R) is independent of the desired range of 
cyclic frequency. Therefore, the memory required remains 
constant independent of the highest cyclic frequency that has 
to be scanned. In addition, it should be noted that the approach 
is a reliable estimator of spectral correlation with a constant 
time-frequency resolution product [32,37]. Yet, the substantial 
computational requirement restricts its practical use. Alsalaet 
has presented a fast ACP approach for efficiently calculating 
the accurate ACP [36]. In the following discussion, the focus 
will be on the asymmetric SC with β values of 0 and 1. To 
provide a thorough understanding of the fast algorithm, 
Fourier transform frequency shifting will be demonstrated to 
provide a complete view of the approach. The act of 
multiplying the time-domain signal by the rotating vector 
exp(j2πf0) is widely recognized as being similar to shifting in 
the frequency-domain by f0, as written [44]. 

ℱ{𝑋𝑋(𝛥𝛥)𝑒𝑒𝑗𝑗2𝜋𝜋𝑓𝑓0𝛥𝛥} = � 𝑋𝑋(𝛥𝛥)𝑒𝑒𝑗𝑗2𝜋𝜋𝑓𝑓0𝛥𝛥𝑒𝑒−𝑗𝑗2𝜋𝜋𝑓𝑓𝛥𝛥
∞

−∞
𝑑𝑑𝛥𝛥

= � 𝑋𝑋(𝛥𝛥)𝑒𝑒−𝑗𝑗2𝜋𝜋(𝑓𝑓−𝑓𝑓0)𝛥𝛥
∞

−∞
𝑑𝑑𝛥𝛥 = 𝑋𝑋(𝑓𝑓 − 𝑓𝑓0)    (13) 

Figure 3 illustrates the impact of frequency shifting on the 
actual and imaginary components of the spectrum of a signal 
in real time. The spectrum of a real-valued signal in the 
negative frequency range is the complex conjugate of the 
spectrum in the positive frequency range. Shifting the 
frequency by f0 makes the whole spectrum in the frequency 
domain to change, like line (f − f0) is relocated to line (f). In 
the context of Discrete Fourier Transform (DFT), applying the 
operation of pre-multiplying the signal by exp( j2πΔf ) causes 
a shift of the whole spectrum by one line. This means that the 
frequency component fk -1 is relocated to fk. The Fast-SC of 

Antoni et al. [34] has previously used this. Alsalaet [36] is 
attempting to use the frequency shifting property once again in 
order to compute ACP in an additional intelligent manner. 
Given that the overall signal length L is much larger than Nw, 
it follows that the cyclic frequency resolution Δα is 
considerably finer than the spectral frequency resolution Δf. 
Each spectral frequency spacing consists of Nb cyclic 
frequency lines, (Nb) is calculated as L divided by Nw and may 
be rounded to the closest integer for the Fast ACP application. 

  
Real part spectrum Imaginary part spectrum 

Fig. 3 Frequency shifting of spectrum of measured time-domain signal [34]. 

Figure 4 displays a portion of an amplitude spectrum. The 
bold lines indicate the spectral frequency lines, while the 
lighter lines denote their α-shifted counterparts. The value of 
α is determined by the equation α = p Δα, where p may take on 
values of 1, 2, 3, and so on, up to Nb − 1. The (Nb Δα) line 
corresponds to the spectral line that precedes it. The primary 
concept behind the fast ACP approach is the computation of 
the shifted spectra only for the Nb lines of α. To determine the 
shifted component of a certain frequency fk beyond (Nb Δα), it 
may be derived from the previously shifted or unshifted lines. 
To illustrate, let's consider the task of calculating the 
component XSTFT (i, fk − α), where α = (Nb + q) Δα. In this case, 
it can be obtained by shifting fk − 1 by qΔα (since q is less than 
Nb), or by applying an appropriate phase correction to XSTFT (i, 
fk − 1 − qΔα). Assume that the total number of cyclic frequency 
lines is Na = αmax/Δα, then the computing advantage in 
calculating the shifted spectra is given by the ratio Na/Nb. 
Further discussion will be provided on how to improve the 
technique and determine the total computational advantage. 

 
Fig. 4 Spectral lines and shifted counterparts [34]. 

2.6. Implementation of Fast-ACP 

In this section, the procedure used to implement the Fast-
ACP algorithm is described. The following steps are used. 

 Set and compute the following parameters: Input (L) 
totally length and (Fs) sampling frequency. For Hann window, 
choice Nw and set R = Nw/3. Given (Δα = Fs/L), the total 
number of cyclic frequency lines (Na = αmax/Δα), the number 
of cyclic frequency lines in one spectral spacing is (Nb = L/Nw). 
Compute the number of blocks (K = (L – Nw + R)/R).  
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 Initial spectrogram calculation: Employ Eq. (9) to 
eradicate further phase correction, and then compute and store 
the unshifted spectrogram  

XSTFT (i, fk), i = 0, 1, 2, …. (K–1) applying (FFT). 
 Compute of the shifted phase corrected spectra: For each 

block i, i = 0, 1, 2, …. (K–1), compute XC
STFT (i, fk − α), p = 1, 

2, 3, 4…. (Nb – 1), if α = pΔα by FFT next to shift signal in 
time-domain. 

 For each block i, correlate XSTFT (i, fk) and XC
STFT (i, fk − 

qΔα)∗, for the full spectral and cyclic frequency range if q = 1, 
2, 3, 4…. (Na). The shifted component at any cyclic frequency 
qΔα is estimated by:  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐 (𝑙𝑙, 𝑓𝑓𝑘𝑘 − 𝑞𝑞∆𝛼𝛼) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐 (𝑙𝑙, 𝑓𝑓𝑘𝑘−𝜋𝜋 − 𝑝𝑝∆𝛼𝛼) 

If m = int(q/Nb) and p = mod(q/Nb).  

If k < m, correlation is terminated for avoiding the negative 
frequencies in vibration signals. for each change in (m)'s or 
jumping between lines, a phase correction of function 
exp(j2πiRNbΔα) must be used. For minimizing multiplications, 
the above correction linked with a variable XSTFT (i, fk) 
primarily and then gradually recalculated with each (m) 
transition. 

After merging the correlated components when i = 0, 1, 2, 
3, ……., (K–1), the results are corrected using Eq. (9) and K 
∥w∥2 Fs to calculate the spectral correlation. On other side, 
SCoh can be estimated using [37]. 

𝑆𝑆𝑆𝑆𝑆𝑆ℎ(𝑓𝑓,𝛼𝛼) =
𝑆𝑆2𝑥𝑥(𝑓𝑓,𝛼𝛼)

�𝑆𝑆2𝑥𝑥(𝑓𝑓, 0)𝑆𝑆2𝑥𝑥(𝑓𝑓 − 𝛼𝛼, 0)
 

Where S2X (f, 0) is estimated according to correlate XSTFT (i, 
fk) with its conjugate and S2X (f − α, 0) is estimated according 
to correlate XC

STFT (i, fk − α) and its conjugate. Figure 5 
illustrated the Fact ACP flow chart used in this work. 

 
Fig. 5 Fast ACP method used in this work [36]. 

3. Experimental work 
3.1. The machinery fault simulator (MFS) 

The Machinery Fault Simulator (MFS) is a device utilized 
for the purpose of examining the main symptoms of frequent 
machinery breakdowns in a way that is both efficient and 
straightforward. Each component is precisely machined to 
strict specifications in order to ensure smooth operation 
without any detrimental vibration signal interference. In a 
controlled environment, the machinery fault simulator can be 
considered an effective tool for obtaining knowledge in 
machinery faults diagnostics, since it allows for the additional 
effects of many defects either separately or in combination. As 
depicted in Fig. 6, the spectra quest MFS found in the applied 
laboratory of the department of mechanical engineering at the 
university of Basrah was used and it consists of a 1 Hp variable 
frequency AC motor accompanied by a programmable 
controller including a multi-featured front panel. The 
controller allows for rpm adjustment within a range of 0 to 
6000 rpm, allowing operation at various speeds. A tachometer 
equipped with an LCD display is employed for the purpose of 
measuring the rotational speed. A ¾ inch diameter steel shaft, 
equipped with a bearing loader weighing 11 pounds (5 kg) and 
two clamp collars for holding the bearing loader at the 
midpoint of the shaft. This arrangement is employed to apply 
loads and improve the spectrum amplitude of the system. Two 
split bracket bearing housings are designed to facilitate the 
process of changing experimental bearings. A flexible 
coupling is utilized to provide a connection between the motor 
and the shaft. An accelerometer of the B & K 4366 type, with 
a serial number of 0931214, was mounted to the experimental 
bearing housing. 

 
(1) Tachometer.                     (2) Electric motor.            
(3) AC-motor controller.         (4) Flexible coupling. 
(5) Normal bearing.                 (6) Bearing loader. 
(7) Experimental bearing.        (8) Data acquisition.       
(9) Accelerometer 

Fig. 6 Machine fault simulator components. 

3.2. Ball bearing used in this work 

In this work, a 1205 double-row self-aligning ball bearing 
manufactured by Koyo is utilized. This type of bearing 
provides the advantage of compensating for misalignment and 
shaft deflection, making it appropriate for applications with 
significant levels of vibration or misalignment [45]. Moreover, 
it is easily assembled and disassembled, which simplifies the 
process of introducing defects into specific components of the 
bearing without damaging its integrity. Figure 7 illustrates the 
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bearing in its assembled state. The frequencies associated with 
bearing faults, termed bearing characteristic frequencies, 
depend on the bearing's dimensions and specifications. Table 
1 shows the dimensions of the Koyo 1205 bearing along with 
the characteristic frequencies of its components (cage, inner 
race, outer race, balls). 

Table 1. Koyo 1205C3 bearing specifications [45]. 

Parameter Value 
Inner diameter 25 mm 
Outside diameter 52 mm 
Ball diameter 7 mm 
Bearing width 15 mm 
Number of balls 24 
Cage defect, FTF 0.41 × Shaft frequency 
Ball defect, BSF 2.5687 × Shaft frequency 
Outer race defect, BPFO 4.8907 × Shaft frequency 
Inner race defect, BPFI 7.1092 × Shaft frequency 

 

      
Fig. 7 Koyo bearing (1205C3) in its assembled condition. 

3.3. Types of experimental faults 

Artificial defects manufacturing is a widely used method 
of simulating defects in roller bearings for testing and analysis 
purposes, aiming to mirror real-world conditions. These 
fabricated defects can take different sizes and shapes. In this 
work, slots defects with 0.191 mm size are used. These defects 
are manufactured within each component of the ball bearing 
including the outer race, inner race, and balls as in Fig. 8. 

  
Outer race slot Inner race slot 

 
Ball slot 

Fig. 8 Types of defects in the used ball bearing. 

3.4. Experiment procedures 

In this work, four types of ball-bearing defects, 
manufactured within the individual components of the ball-
bearing such as the outer race, inner race, and balls as listed in 
Table 2 were used as the basis for collecting vibration data. 
This data was utilized for diagnosing defects using the spectral 
correlation technique under varying machine speed. 
A data acquisition device was used to collect vibration signals 
of generated by the Machinery Fault Simulator (MFS). The 
following steps are used in experimental procedure, see Fig. 9. 

1. Install a 5 kg disk was connected to the shaft to simulate 
load conditions, as illustrated in Fig. 6 of the test rig. 

2. Additionally, install two bushings were installed on the ¾ 
inch shaft ends to fix the ball bearings by compensating for 
the diameter difference between the shaft and the internal 
diameter of the bearing. 

3. Next, the operational settings for the data acquisition 
device (IDAC-6C) software interface were configured, as 
depicted in Fig. 10. 

4. Vibration data is then gathered for both constant and 
varying speeds for both normal and faulty bearings. 
Finally, the collected raw vibration data were processed 
using MatLab software to assess the condition of the 
bearings. 

 
Fig. 9 Laboratory experimental procedures flow chart. 

 
Fig. 10 Operation settings for IDAC-6C software interface. 
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Table 2. Total cases studied in this experimental work. 

Defect 
Type 

Defect 
Shape 

Defect Size 
(mm) 

Number 
of defects 

Varying speed 
range in 

Acceleration 
Case (R.P.M) 

Varying speed 
range in 

Deceleration 
Case (R.P.M.) 

Normal none none none 480-2040 --- 

Outer slot 0.196 one slot 480-2040 --- 

Inner slot 0.191 one slot 480-2040 --- 

Ball slot 0.196 one slot 480-2040 --- 

Compound slot 
outer: 0.196 
inner: 0.191 
ball: 0.196 

Three slots 480-2040 1800 - 660 

 
4. Results and discussion  

This paper presents the results and discussion of applying 
the spectral correlation technique, along with spectral 
coherence, and enhanced envelope spectra to analyze the real 
signals of ball bearings (specifically, Koyo 1205C3) under 
normal and defective (inner, outer, and ball) conditions. The 
data collected from the data acquisition device were processed 
using MatLab software (version R2022a) in both frequency-
order domain and order-order domain for varying speed, two 
cases of varying speed are considered, the first one is 
acceleration case, the speed increases from (480-2040) rpm, 
i.e. (8-34 Hz), while the second case is deceleration case, the 
speed decreases from (1800-660) rpm, i.e. (30-11 Hz). 

Firstly, the measured vibration and speed signals of 
acceleration and deceleration cases are illustrated in Figs. 11 
and 12. The increasing or decreasing rate of speed appears 
sharply in both vibration and speed signals. 

 

 
Fig. 11 Ball bearing signals in acceleration case (a) Vibration signal, and (b) 

Speed signal. 

Secondly, the bi-variables maps of the ball bearing in 
conditions (normal, outer slot: size 0.196 mm, inner slot: size 
0.191 mm, ball slot: size 0.196 mm) to estimate the 
characteristic frequencies and EES of acceleration case in 
frequency-order and order-order maps, and these frequencies 
and EES values are listed in Table 3 and 4. 

In the third step, the compound defects condition (outer 
slot: size 0.196 mm, inner slot: size 0.191 mm, ball slot: size 
0.196 mm) in acceleration and deceleration cases are measured 
and analyzed in this work. 

 

 
Fig. 12 Ball bearing signals in deceleration case (a) Vibration signal, and (b) 

Speed signal. 

Table 3. The first three estimated values of characteristic frequencies and 
EES in frequency-order domain. 

Bearing 
condition Normal Outer race 

defect 
Inner race 

defect 
Ball 

defect 

Cyclic 
Frequency 

(order) 

1 1.0000 4.8809 7.1189 2.5552 
2 2.0000 9.7642 14.2354 5.1082 
3 3.0000 14.6452 21.3570 7.6635 

EES 
1 0.0407 0.1249 0.2072 0.4430 
2 0.2455 0.4044 0.1507 0.3668 
3 0.0480 0.1038 0.1185 0.2472 

Processing time 
(minute) 20.0733 22.0650 19.1183 21.0216 

 
Table 4. The first three estimated values of characteristic frequencies and 

EES in order-order domain. 

Bearing 
condition Normal Outer race 

defect 
Inner race 

defect 
Ball 

defect 

Cyclic 
Frequency 

(order) 

1 0.9991 4.8768 7.1105 2.5531 
2 1.9983 9.7536 14.2237 5.1039 
3 2.9974 14.6329 21.3368 7.6570 

EES 
1 0.0385 0.1790 0.2122 0.4286 
2 0.1918 0.3952 0.1237 0.4312 
3 0.0459 0.1048 0.0977 0.2556 

Processing time 
(minute) 14.594 16.7700 12.9431 15.9259 

 
Defects in a ball bearing are specific types of faults that 

occur within the particular component of the bearing. For the 
Koyo 1205 ball bearing, the Ball Pass Frequency Outer 
(BPFO) is expected to appear at 4.8907 times the rotating 
frequency, the Ball Pass Frequency Inner (BPFI) at 7.1092 
times the rotating frequency, and the Ball Spin Frequency 
(BSF) at 2.5687 times the rotating frequency. These specific 
frequencies are essential for detecting potential defects on the 
outer race, inner race, and rolling elements (balls) respectively, 
thus facilitating early diagnosis of defects. The results of the 
acceleration case in frequency-order and order-order maps are 
illustrated in Figs. 13 and 14. In comparison, Figs. 15 and 16 
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show the frequency-order and order-order maps of the 
compound defects condition in the deceleration case. These 
figures depict the diagnostic results of a bearing operating 
under compound defect conditions, with each figure 
comprising multiple subfigures representing different stages of 
signal processing and analysis. The enhanced envelope 
spectrum reveals the characteristic cyclic frequencies of the 
outer race, inner race, and ball defects and thus the bearing 
condition can be diagnosed. Figures 13-16 and Tables 3 and 4 
illustrate the appearance of peaks at the calculated (BPFO, 
BPFI, and BSF) values and their corresponding harmonics in 
the enhanced envelope spectrum under varying speeds. It is 
crucial to observe that within each spectrum, the presence of 
at least three harmonics indicates the presence of a fault, as 
shown by the experimental results. These findings demonstrate 
the effectiveness of the spectral correlation method in 
accurately detecting and diagnosing ball-bearing defects under 
varying machine speeds. 

 

 

 

 
Fig. 13 Vibration analysis of compound defects of ball bearing in 

acceleration case using spectral correlation in frequency-order domain. 
 

 

 

 

 
Fig. 14 Vibration analysis of compound defects of ball bearing in 
acceleration case using spectral correlation in order-order domain. 
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Fig. 15 Vibration analysis of compound defects of ball bearing in 

deceleration case using spectral correlation in frequency-order domain. 

 

 

 

 
Fig. 16 Vibration analysis of compound defects of ball bearing in 
deceleration case using spectral correlation in order-order domain. 

5. Conclusions  
In this work, Fast-ACP method was used to increase speed 

of analyzing and diagnosing the defects in ball bearing (Koyo 
1205C3 type) under varying speed condition. Four types of 
defects were studied, the slot in outer race with size 0.196 mm, 
the slot in inner race with size 0.191 mm, in ball with size 
0.196 mm in additional to compound defect. The machinery 
fault simulator (MFS) equipment was used to determine ball 
bearing defects using vibration signal analysis. Also, spectral 
correlation technique was employed to detect defects in ball 
bearings running at varying speed, along with spectral 
coherence and the corresponding Enhanced Envelope 
Spectrum (EES) in frequency-order domain and order-order 
domain. The following points can be concluded: 

1. The characteristic frequencies estimated by bi-variables 
maps of the ball bearing (Koyo 1205C3 type) under 
conditions (normal, outer slot: size 0.196 mm, inner slot: 
size 0.191 mm, ball slot: size 0.196 mm) are very close to 
that calculated in Koyo web (BPFO: 4.8907, BPFI: 7.1092, 
BSF: 2.5687). 

2. The applied method computation advantage increases as 
the cyclic frequency range increases and does not require 
large memory, making it suitable for low-memory 
platforms such as portable data collectors. 

3. The variable speed tests have shown that the OOSC 
provides comparable, if not better, results when compared 
to FOSC. This supports the inference that OOSC can 
successfully replace FOSC in analyzing cyclo-non-
stationary signals and hence gives a benefit to Fast-ACP. 

Abbreviations Abbreviations 
ACP                  Averaged Cyclic Periodogram 
FastACP           Fast Averaged Cyclic Periodogram 
FFT                   Fast Fourier Transform 
EES                   Enhanced Envelope Spectrum 
MFS                     Machinery Fault Simulator 
CS                     Cyclo-stationary 
CS1                   First-Order Cyclo-stationary 
CS2                   Second Order Cyclo-stationary 
FOSC                Frequency-Order Spectral Correlation 
OOSC               Order-Order Spectral Correlation 
FAM                 FFT Accumulation Method 
SSCA               Strip-Spectral-Correlation Algorithm 
FSC                  Fast-Spectral-Correlation 
STFT                Short Time Fourier Transform 
CSC                  Cyclic Spectral Correlation 
CSCoh              Cyclic-Spectral-Coherence 
DFT                  Discrete Fourier Transform 
BPFO               Ball Pass Frequency Outer race 
BPFI                 Ball Pass Frequency Inner race 
BSF                  Ball Spin Frequency 
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